If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=14x-56/9
We move all terms to the left:
7x^2-(14x-56/9)=0
We add all the numbers together, and all the variables
7x^2-(+14x-56/9)=0
We get rid of parentheses
7x^2-14x+56/9=0
We multiply all the terms by the denominator
7x^2*9-14x*9+56=0
Wy multiply elements
63x^2-126x+56=0
a = 63; b = -126; c = +56;
Δ = b2-4ac
Δ = -1262-4·63·56
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-126)-42}{2*63}=\frac{84}{126} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-126)+42}{2*63}=\frac{168}{126} =1+1/3 $
| 2x^2+1=0. | | 102-7d=11 | | 12=16^x | | 24÷7x=10 | | 1+x/5=6 | | w+46+34=23w+21 | | −(x+3)=2x−6 | | v+v=v+30 | | u-30+u=u+38 | | b+12+b-3=b+44 | | 3x+7=71 | | z=2-3 | | u+u-20=u+39 | | 3n+16=7n+16-4n | | z-44+z-17=z+29 | | x/4+10=2 | | y+y-25=y+42 | | -2g-16=4 | | b+b-36=b+30 | | 6x+(-9)=69 | | t+20+t+17=t+50 | | 2x+3x+6=19 | | 5x(1+5)=3x(6+4) | | 2+0.5=y | | 2(x-1)^2=3x+7 | | 1/2x-9=3/4x-17 | | 10+2x=5x+7 | | (5+z)(4z-3)=0 | | (10x+60)+(30x-20)=180 | | 4(5.625)+3t=6 | | 4-4=9x+5x | | u^2-2u-72=0 |